Mitochondria-targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress response in HeLa cells.

نویسندگان

  • Ayaka Hosoki
  • Shin-Ichiro Yonekura
  • Qing-Li Zhao
  • Zheng-Li Wei
  • Ichiro Takasaki
  • Yoshiaki Tabuchi
  • Li-Li Wang
  • Shiga Hasuike
  • Takaharu Nomura
  • Akira Tachibana
  • Kazunari Hashiguchi
  • Shuji Yonei
  • Takashi Kondo
  • Qiu-Mei Zhang-Akiyama
چکیده

Reactive oxygen species (ROS) act as a mediator of ionizing radiation-induced cellular damage. Previous studies have indicated that MnSOD (SOD2) plays a critical role in protection against ionizing radiation in mammalian cells. In this study, we constructed two types of stable HeLa cell lines overexpressing SOD2, HeLa S3/SOD2 and T-REx HeLa/SOD2, to elucidate the mechanisms underlying the protection against radiation by SOD2. SOD2 overexpression in mitochondria enhanced the survival of HeLa S3 and T-REx HeLa cells following γ-irradiation. The levels of γH2AX significantly decreased in HeLa S3/SOD2 and T-REx HeLa/SOD2 cells compared with those in the control cells. MitoSox(TM) Red assays showed that both lines of SOD2-expressing cells showed suppression of the superoxide generation in mitochondria. Furthermore, flow cytometry with a fluorescent probe (2',7'-dichlorofluorescein) revealed that the cellular levels of ROS increased in HeLa S3 cells during post-irradiation incubation, but the increase was markedly attenuated in HeLa S3/SOD2 cells. DNA microarray analysis revealed that, of 47,000 probe sets analyzed, 117 and 166 probes showed more than 2-fold changes after 5.5 Gy of γ-irradiation in control and HeLa S3/SOD2 cells, respectively. Pathway analysis revealed different expression profiles in irradiated control cells and irradiated SOD2-overexpressing cells. These results indicate that SOD2 protects HeLa cells against cellular effects of γ-rays through suppressing oxidative stress in irradiated cells caused by ROS generated in the mitochondria and through regulating the expression of genes which play a critical role in protection against ionizing radiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paradoxical Relationship between Mn Superoxide Dismutase Deficiency and Radiation-Induced Cognitive Defects

Radiation therapy of the CNS, even at low doses, can lead to deficits in neurocognitive functions. Reduction in hippocampal neurogenesis is usually, but not always, associated with cognitive deficits resulting from radiation therapy. Generation of reactive oxygen species is considered the main cause of radiation-induced tissue injuries, and elevated levels of oxidative stress persist long after...

متن کامل

Fenofibrate decreases radiation sensitivity via peroxisome proliferator-activated receptor α-mediated superoxide dismutase induction in HeLa cells

PURPOSE The fibrates are ligands for peroxisome proliferator-activated receptor (PPAR) α and used clinically as hypolipidemic drugs. The fibrates are known to cause peroxisome proliferation, enhance superoxide dismutase (SOD) expression and catalase activity. The antioxidant actions of the fibrates may modify radiation sensitivity. Here, we investigated the change of the radiation sensitivity i...

متن کامل

Acquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase.

Acquired resistance of cancer cells to anticancer drugs or ionizing radiation (IR) is one of the major obstacles in cancer treatment. Pancreatic cancer is an exceptional aggressive cancer, and acquired drug resistance in this cancer is common. Reactive oxygen species (ROS) play an essential role in cell apoptosis, which is a key mechanism by which radio- or chemotherapy induce cell killing. Mit...

متن کامل

Salen Mn Complexes are Superoxide Dismutase/Catalase Mimetics that Protect the Mitochondria

Salen Mn complexes, including EUK-134, EUK-189 and a cyclized analog EUK-207, are synthetic superoxide dismutase (SOD) and catalase mimetics that are beneficial in many models of oxidative stress. Though not designed to target the mitochondria, salen Mn complexes show "mito-protective" activity, that is, an ability to attenuate mitochondrial injury, in various experimental systems. Treatment wi...

متن کامل

The effect on radioresistance of manganese superoxide dismutase in nasopharyngeal carcinoma.

Failure to control nasopharyngeal carcinomas (NPC) is mainly due to a portion of radioresistant phenotype. Identifying gene targets for radiosensitization is an important strategy in improving anticancer treatments. Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species that are associated with radiation-induced cellular apoptosis and necrosis. The antioxidant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of radiation research

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 2012